INTRODUCTION

Valsalva retinopathy may occur as a sudden, dramatic loss of central vision due to the premacular location of the haemorrhage. It has been described in different clinical settings, and there are several options for its treatment. Haemorrhages of less than one disk diameter tend to spontaneously resolve in a short period of time and a conservative approach is generally justifiable. By contrast, the spontaneous resolution of large and dense haemorrhages, is very unlikely. Several types of treatment are available, such as DRAINAGE OF THE HAEMORRHAGE INTO THE VITREOUS CAVITY WITH ND:YAG LASER HYALOIDOTOMY, gas injection with or without recombinant tissue plasminogen activator, classical pars plana vitrectomy and non-vitrectomising vitreous surgery as reported by Wu et al. However, when the premacular blood is coagulated, drainage with YAG laser is not possible. Moreover, the proximity to the retina presents an additional problem when using the laser. Complications of Nd:YAG laser membranotomy include creating a macular hole or persistent premacular cavity, retinal detachment and epiretinal membrane formation. ND:YAG LASER CAN BE USEFUL IN THE TREATMENT OF NON-DENSE AND NON-FOAMED PREMACULAR HAEMORRHAGES, AND WHEN THE LOCATION OF THE BLOOD IS SUBHYALOID, but not when there is blood under the ILM.

ADVANTAGES

TO INCREASE AWARENESS OF THE POSSIBLE COMPLICATION OF MACULOPATHY OCCURRING IN INDIVIDUALS DURING THE VALSALVA MANOEUVRE AND THE EFFICACY OF THE LASER ND:YAG LASER TREATMENT.

METHODS

Two men, 26 and a 46 years old, complained of sudden, painless loss of vision in their left eye. One of them became symptomatic after lifting a suitcase (CASE 1), and the other one after vigorous dancing (CASE 2). There was no history of trauma. Medical, ocular and familial history were unremarkable, except for systemic hypertension in Case 1.

A complete ocular examination, including determination of Visual Acuity (VA), anterior and posterior biomicroscopy, and optical coherence tomography (OCT), were performed, at first and last examination.

The systemic examination and all relevant blood tests were normal, and there was no other relevant social history.

EFFECTIVENESS AND SAFETY

At first visit, Best corrected visual acuity (BCVA) was 0.05 (decimal notation) in left eye (LE) and 1.0 in right eye (RE) in Case 1, and 0.2 in LE, and 1.0 in RE in Case 2. Anterior segment examination revealed no abnormalities in both cases. Fundoscopy revealed the presence of a submacular hemorrhage in their left eye. Funduscopy appearance of right eye was normal in both patients.

The appearance of the left fundus, combined with an associated unequivocal history of physical exertion, was consistent with a diagnosis of Valsalva maculopathy. So, 24 hours after diagnosis, they underwent Nd:YAG laser treatment to drain the entrapped premacular blood into the vitreous. In Case 1, after photodisruption, vision in the affected eye improved rapidly due to exposure of the macula, with a final VA of 1.0. In Case 2, VA was 0.5 48 hours after treatment, 0.7 seven days after treatment, and 1.0 one month later. Their vision continues to remain normal to date.

IN CONCLUSION, ND:YAG LASER TREATMENT MAY BE A GOOD ALTERNATIVE FOR RECENT PRERETINAL HEMORRHAGES. CLINICAL BENEFITS INCLUDE RAPID VISUAL REHABILITATION AND THE AVOIDANCE OF VITRECTOMY. THE PROGNOSIS FOR VALSALVA MACULOPATHY IS EXTREMELY FAVOURABLE, AND PATIENTS SHOULD BE REASSURED ACCORDINGLY.

REFERENCES